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After proving a generalized version of Garkavi’s theorem, we give as applications
proofs of existence results on best approximation by polynomials, and fractional
linear and holomorphic operators between Banach spaces. We also obtain theorems
on best approximation by some types of rational functions defined in open subsets
of Banach spaces. By considering a natural non-normable distance we prove that
every mapping bounded on the bounded subscts of a Banach space has best
approximation by polynomials of degrec less than or equal to a fixed natural
number 7. € 1989 Academic Press, Inc.

1. INTRODUCTION

A classical result of Ch. de la Vallée-Poussin [13] states that every real
continuous function on [ —1, 1] has a best approximation in the set of all
functions of the form P(x)/Q(x) where P and Q are real polynomials of
degree less than or equal to m and a, respectively, and Q(x)> 0 for cvery
xe[—1,1]. Walsh [14] proved a similar result for complex functions,
continuous in a perfect subset of the complex plane. Cheney and Loeb [3]
considered the problem of best approximation by ratios of trigonometric
functions. Newman and Shapiro [10], Rice [11], and Bohem [2] studied
the existence of best approximation by quotients of finite linear combina-
tions of real continuous functions in topological spaces. Other aspects of
the theory of best approximation by similar functions have been studied by
many authors.

When U is a non-void open bounded subset of a complex Banach space
E and F is also a complex Banach space, it makes sense to consider poly-
nomials from U into F defined through continuous multilinear mappings
from E into F. In this article we study the existence of best approximation
of bounded mappings from U into F by certain quotients of polynomials
from U into F by polynomials from U into C (i.e., rational mappings from
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U into F). The proof of our results depends on the compactness of certain
subsets of holomorphic (i.e., Giteaux-differentiable and continuous}
mappings from U into F. We also prove results on best approximation of
bounded mappings from U into F by holomorphic and polynomial map-
pings from U into F.

We denotc by /= (U; F) the vector space of all bounded mappings from
U into F with the norm

111, =sup{if(x)i; xe U}, fel™(UsF).

The vector subspace of / *(U; F) formed by all bounded holomorphic map-
pings from U into F is denoted by # “(U; F). We prove in Section 3 that,
when F is a dual space, every fel™(U; F) has a best approximation in
H# (U, F) and, as a corollary to this result, that f has a best approxima-
tion in the set of all continuous polynomials from E into F with degree less
than or equal to n.

A mapping f e #*(U; F) is called a rational mapping of type (m, un} if
there are continuous polynomials P from E into F and Q from E into C
of degrees less than or equal to m and n, respectively, such that
f(x) @{x)=P(x) for every x in U and Q is not identically zero in U. We
denote the set of all such mappings by #;, ,(U; F). In Section 4 we prove
the existence of best approximations of fe/*(U;F) by elements of
R (. Us F) when dim(E) < +oc and F is a dual space. We also prove that
when dim(E)= +oc and F is C there exist best approximations of
fel™(U;C) by elements of 2 ,,,(U; C) and 2 ,,(U; C). The problem is
open for the other values of m and n, but we conjecture that at least for
the cases m=1, neN, F=C, we should have results of existence on best
approximation by rational functions of this type.

We denote by %, (E; F) the vector space of all mappings from £ into F
which are bounded over the bounded subsets of E. The locally convex
topology 7, in #(FE; F) of the uniform convergence over the bounded
subsets of E is metrizable but non-normable in general. In Section 5 we
prove results of best approximation of fe #(E; F) by polynomial mapn-
pings from E into F with respect to a metric defining z,.

It is well known that the vector space of all compact linear mappings
from E into F may be antiproximinal in the Banach space of all continuous
linear mappings from E into F (sec Holmes and Kripke [7]). However
Deutsch eral. proved in [4] that, when F is a dual space, the set of
continuous linear mappings from E into F of finite rank N (i.., mappings
whose images are contained in vector subspaces of dimension N) is
proximinal in the Banach space of all bounded linear mappings from £
into F. In Section 6, with the help of a resuit communicated to us by
J. Mujica and a result of K. Floret [ 5], we show how theorems of this type
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are easily proved for holomorphic, rational, and polynomial mappings of
finite rank N.

The lemma (and its corollary) proved in Section 2 is fundamental for the
proofs of our results. It generalizes a result of Garkavi [6] and it is stated
in greater generality than is necessary for our applications in greater
generality than is necessary for our applications but, since it is interesting
in itself, we felt we should state and prove it in this way.

2. THE FUNDAMENTAL LEMMA

If X is a separated topological vector space over K (C or R) with
topology © we consider the set &(X) of all functions ¢ from X into R
such that (i) ¢(x)=0 for every xe X, (ii) ¢ is continuous in X, (iii) for
every bounded subset B of X we have ||¢|z<diam ¢, where |¢|z=
sup{¢(t); te B} and diam ¢ =sup{e(x); xe X} =sup{p(y —x); y, xe X }.

2.1. Exampres. (a) If pe(0,1] and g is a non-zero continuous
p-seminorm in (X; 7) then ge & (X) with diam g= +oc0.
(b) If pe(0, 1] and the topology t of X is defined by a sequence
(9.)_, of p-seminorms in X, then we may consider

R nn Gn(x)
qo(x)'n§12 —__1+t],,(x)’ VxeX

and
d(xa y)=(P(y"_X), vx: yEX

Then 4 is a metric defining the topology 7 of X. It is clear that ¢ is
continuous in X and that diam ¢ = 1. In order to show that ¢ € #(X) it is
enough to prove that for n=1,2, .. and for every non-empty bounded
subset B of (X, 1)

gn(x) | |
sup{m,xeB}<1 (1)

which implies ||¢| z<1=diam ¢. If (1) were not true there would be a
positive integer n such that for every k=1,2,.. we could find x, B
satisfying

qn(xk) >1 1

1+q,00)" &
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This would give g,(x,)>k—1 for every k=1, 2, ... But this is impossible
since ¢, has to be bounded over B.

(c) If g is a non-zero continuous quasi-seminorm in (X, t) then
g€ (X)) with diam g = +oc.

2.2. DerINITION.  If (X, 1) is a separated topological vector space over I
and ¢ € #(X), a non-empty subset Y of X is said to have the Chebyshev
center property in X relative to ¢ if for every non-cmpty bounded subsct B
of X there is f€ Y such that

sup ¢(f — x) = inf sup o(g—x). (2)

xeB ge€Y yep

In this case fis called a Chebyshev center of B relative to Y and ¢, and the
right-hand side of (2) is called the radius of Chebyshev of B relative te¢ Y
and . If B= {x} we get (2) writen in the form

o(f—x)=inf @(g—x) (3)

geY

and we say that f is a best approximation of x in Y relative to ¢. If this
happens for all xe€ X we say that Y is proximinal in X relative to ¢. When
there is no doubr about the ¢ which is being considered we drop out the
reference to ¢ (e.g., Y has the relative Chebyshev center property in X, f
is a Chebyshev center of X relative to 7, etc).

When Y is proximinal in X relative to ¢ and ¢ ~'({0})= {0}, then it is
quite simple to prove that Y is a closed subset of X for the topology .

2.3. LEMMA. Let (X, t) be a separated topological vector space over ¥
and let ¢ be an element of S (X). If 4,={1eR;|t!<r} we consider a
separated topology & in X compatible with the vector space structure such
that ¢ '(4,) is a-closed for every r e [0, diam ¢). We denote

K, (B)={xeX;xeb+¢ '(4,)VheB}.

If Y is a non-empty subset of X such that Y n K, (B) is o-countably compact
for every re [0, diam @) and every non-empty bounded subset B of (X, 1),
then Y has the Chebyshev center property in X relative to ¢.

Proof. For a non-empty bounded subset B of (X, t) we consider

rg=inf sup @(y—t)<diam ¢

yeY 1en
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and we define f(x)=sup{@(x—1);1€ B} for every x in X. For pe R we
have

{xeX;p(x—1)<p}=t+9~'(4,)

o-closed for every te B. Hence f5 is o-lower semicontinuous in X and,
consequently, for n=1, 2, ... and é =min{1, diam ¢ —r,}

o
C"={y€ Y;fa(y)srﬁ;}#(é

is relatively o-closed in Y. We also have C,,,cC, and
YnK,, .y 15,(B)>C, for every n>2. Since YNK,,,, 15,(B) is o-coun-
tably compact, it follows that N*_,C,#¢. Hence we have rz=
sup{@(f— 1), te B} for each f€ N*_, C,. This means that each element of

N, C,is a Chebyshev center of B relative to Y and ¢. Q.E.D.

2.4. CorROLLARY. Let X be a vector space over K and let q be either a
p-norm (pe (0, 1]) or a quasi-norm in X. If ¢ is a topology in X compatible
with the vector space structure such that B, ,(0)={xeX;q(x)<1} is
o-closed and Y is a non-empty subset of X such that {yeY;q(y)<r} is
o-countably compact for every r>0, then Y has the Chebyshev center
property in X relative to q.

Proof. First we note that ¢ '(4,)={xeX;q(x)<r}=B8,,(0) is the
closed ball of center 0 and radius r with respect to ¢. If ¢ is a p-norm
g~ '(4,)=r"*B,,(0), and, if g is a quasi-norm ¢~'(4,)=rB,,(0). In any
case ¢ '(4,) is a-closed. If B is a non-empty bounded subset of (X, ¢), then
there is p >0 such that sup{g();re B} <p. If r>0 and ¢ is a p-norm we
have

YK, (B)=) {yeY;q(y—b)<r}

be B

c{yeY;q(y)<r+p}.

If ¢ is a quasi-norm, we know that there is M>0 such that
g(z +1t)< Mq(z)+ Mqg(t) for all z and ¢ in X. Hence

YnK, (B)c {yeY;q(y)<M(r+p)}.

In any case we get YnK, (B) o-countably compact. Now we apply
Lemma 2.3 with ¢ =¢q. Q.ED.
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3. BEST APPROXIMATION BY HOLOMORPHIC OPERATORS

In this section we consider £ a complex Banach space, U a non-void
bounded open subset of E, and F=G* a dual Banach space. We denotc by
{*(U; F) the vector space of all bounded mappings from U into F normed
by

1f1.=sup{lf(x)l:xeU}  Vfel™(U;F).

The Banach subspace of /™ (U, F) formed by all bounded holomorphic (ie.,
Gateaux-differentiable and continuous) mappings from U into F will be
denoted by # (U, F). The locally convex topology in [ *(U; F) generated
by the seminorms

Py (f)=sup{|f(x)(»); xe K}

for fel™(U; F), K a compact subset of U, and ye G, is denoted by t&. The
compact-open topology in /™ (U; F) is indicated by 7, and it is clear that
t,=1& when Fis a finite-dimensional Banach space.

3.1. THEOREM. (1)} If ¥ is a vector subspace of |™(U; F) containing
AU F), then #>(U,F) has the relative Chebyshev center property
(hence, it is proximinal) in ¥

(2) If W is a t§-closed subset of #=(U; F) and ¥ is a vector sub-
space of 1™(U; FY containing W, then W has the relative Chebyshev center
property in ¥,

Proof. (1) is a consequence of Corollary 2.4 if we prove that
B,={feH (U F)lifi. <r}

is t¥-compact for every r>0. By the generalized Montel’s theorem (see
Barroso et al. [1]) 4, is t&-relatively compact in #(U; (F, o(F; G))). Here
H(U; (F, o(F;G))) denotes the vector space of all holomorphic (ie.,
Gateaux-differentiable and continuous) mappings from U into (F, o{F; G)}
and o(F; G) denotes the weak topology in F defined by G. If fis in the
t¥-closure of #, in # (U, (F, o(F, G))) there is a net (f,),., in &, which is
t¥-convergent to f. It follows that (}f,(x)(2)}| )., converges to | f(x)(z)| for
every xe U and ze G. Hence

Ik = sup  IAx)I<r
ze (:\ezb <1
and fe!™(U; F). Since #«<(U; F) is t&-closed in /*(U; F) it follows that
fe#,. Hence %, is t&-compact.
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Part (2) is a consequence of Corollary 2.4 since
W B ={feW;Ifle<r}
is 7§-compact. Q.E.D.

Part (2) of this theorem gives results of best approximation by polyno-
mial operators. In order to give the precise results of this type we fix the
notation we are going to use. If n=1, 2, ... we consider the complex vector
space L("E; F) of all continuous n-linear mappings from E” into F. We
denote by 2("E; F) the vector space formed by all mappings P from E into
F such that there is A € #("E; F) satisfying P(x)= A(x, .., x) = Ax" for all
xe E. For n=0 the vector space Z(°E; F) is formed by all constant map-
pings from E into F. The elements of #("E; F), n=0, 1, .., are called
n-homogeneous continuous polynomials from E into F. If we set

1Pl =sup{[P(x)I; x| <1}  VPeZ("E;F)

then #("E; F) is a Banach space and it is not difficult to show that || .
is an equivalent norm in this space. Hence we may consider 2("E; F) as a
Banach subspace of /*(U; F) through the restriction mapping to U.
A mapping P: E— F is called a continuous polynomial of degree less
than or equal to meN={0,1,..} if P=Py,+ P, + --- +P, for some
P,e #(/E; F), j=0, 1, .., m. The vector space of all such mappings will be
denoted by #,(E; F). For all n, me N the subspaces 2("E; F) and %, (E; F)
are t¥-closed in # (U, F). Hence, from Theorem 3.1, part (2), it follows
that the following results are true for all n, me N.

3.2. CorOLLARY (1) The vector space #,(E; F) of all continuous poly-
nomials from E into F of degree less than or equal to m has the relative
Chebyshev center property (hence, it is proximinal) in 1™(U; F).

(2) The vector space P("E; F) of all continuous n-homogeneous poly-
nomials from E into F has the relative Chebyshev center property (hence, it
is proximinal) in 1*(U; F).

The special case of part (2) in Corollary 3.2 was proved by Roversi in

[12].

4. BEST APPROXIMATION BY RATIONAL MAPPINGS

In this section E is a complex Banach space, U is a non-empty bounded
open subset of E, and Fis a complex dual Banach space.

We denote by 277, ,(U; F) the set of all fe s#*(U; F) such that there
are polynomials Pe Z,(E; F), Q € Z,(E,; C) satisfying Q(x) f(x)= P(x) for
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every x € U with Q not identically zero in U. The elements of 27, (U; 7)

are called bounded rational mappings of type (m, n) from U into F. We note
that:

(i) The clements of R, (U; F) are the restrictions to U of the
polynomials of degree less than or equal to m.

Gi) I feR, (U F) there are ceF, Qe#(E, C) such that
Q(x) f(x)=c for every xe U and Q is not identically zero in U. If f'is not
the constant mapping 0 we have Q- f not identically zero in an open dense
subset of U. Hence ¢ # 0 and it follows that f(x)# 0 and Q{x)+# 0 for every
x € U. Therefore f(x)=c¢/Q(x) for every xe U.

(iii) The elements of 2 |,(U; F) are cailed bounded linear fractional
mappings from U into F.

The next lemma is fundamental in the proof of the results we get on best
approximation by rational mappings.

4.1. LEMMA. Let B, be the subset of R, (U, F) formed by those map-

“mn
pings f such that | f . <r. If (f)]_, isa (seq;zen('e of elements of #,, then
there are fe # (U, F), xo€ U, and a subnet (f, )., of (f})5-, such that
(f},)ae s converges to f in the sense of the topology t& and, for every finite-
dimensional vector subspace S of E with xye S, we have fIUNS as an

element of #7°  (UnN S; F).

“(m.n)

Proof. For every j=1,2,.. there are P,e Z,(E; F), Q,e Z(E; C) such
that Q (x) f;(x) = P,(x) for every xe U and Q, is not identically zero in U.
With no loss of generality we may take Qi =1 for every j=1,2, ...
Hence ||Pjli,. <r for every j=1,2,... By the generalized version of
Montel’s theorem we can get fe #* (U, F), Pe ?(E; F), Qe #(E;C),
and a subnet (f,),., of (f)7, such that (f,).c; (P,)acsr and (Q,)sc,
converge respectively to f, P, and Q in the sense of the topology tJ. It is
clear that f(x) Q(x) = P(x) for every xe U. If f'is identically zero in U the
lemma is already proved. If f is not identically zero we consider the sets
A;={xeU;Qx)#0}, j=1,2,.., and A= {xeU; f(x)#0}. These sets
are open dense subsets of U. Hence, by Baire’s theorem, B=A (]2, 4,)
is dense in U and there is x,€ U such that f(x,)#0 and Q(x,)#0 for
every j=1,2,.... If S is a finite-dimensional vector subspace of E with
xo€ S, then Un S is relatively compact in S and we have [|Q,l ;5=
sup{ 1@ (x)il; x e Un S} = sup{l|Qx)I; xe Un S} = 1Q,lz~s. Since
(@,.)xe, converges to Q for g in E we have (@, 7=5).,; converging to
[Qlz=s- By dividing Q; and P, by |Q,lz=s we may consider
1Q iz~s=1"for every j=1, 2, ... It follows that ||Q|7=5=1 and Q is not
identically zero in U~ S. Hence f| U S is an element of 2, (U S; F).

Q.E.D.
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We remark that the above proof does not provide us with Q not identi-
cally zero in U since we modified the Qs when we divided them by
1Qliz=z- Now we can prove the following results.

4.2. THEOREM. When dim(E) < oC

(i) If ¥ is a vector subspace of 1“(U; F) containing R, »(U; F),
then R, (U F) has the relative Chebyshev center property (hence, it is
proximinal) in V.

(i) If # is a non-empty 1§-closed subset of R, ,,(U; F) and ¥ is a
vector subspace of 1*(U; F) containing W', then W has the relative
Chebyshev center property in V.

4.3. THEOREM. (1) If ¥ is a vector subspace of |*(U;C) containing
9?(’8") (U; C) (respectively, R ,(U;C)), then R, (U;C) (respectively,
R 1.1)(U; C)) has the relative Chebyshev center property in 4.

(i) If W is a to-closed non-empty subset of either R (U, C) o
R )0\U; C) and ¥ is a vector-subspace of 1™ (U; C) containing W', then W
has the relative Chebyshev center property in ¥

Proof of Theorem 4.2. (i) follows from Corollary 2.4 since, when E
has finite dimension, Lemmad4.l implies that &, ={fe Xy, , (U;F);
1/l <r} is t¢-countably compact. Part (ii) follows from the fact that
B.AW ={feW;|flo<r}is t§-countably compact.

Proof of Theorem 4.3. Part (i) will be proved as a conscquence of
Corollary 2.4 if we show that B, = {fe R, (U, C); | fll <1} is 1o-coun-
tably compact when (a) m=0 and (b) m=n=1.

Case (a). Let (f))7., be a sequence in #,. By Lemma 4.1 we know that
there are fe #*(U;C), xoe U, a subset (f,),., of (f})7= such that
(f1.)uc s converges to fin the sense of the topology 1,, and, for every finite-
dimensional vector subspace S of E with x,eS, we have
SIUnSeRy,(UnS;C). Since |f]l,, <r it is enough to show that
Se€RT ,,(U; C). If £=0 this is trivial. We suppose f # 0. For cach above-
mentioned S we can find cge A(S;C)=C and 0%e 2(S;C) such that
Sf(x)=¢s/Q%(x) for every xe Un S and Q%(x) #0 for every xe U S. (Sce
the remark about Z ,,(U; F) made at the beginning of this section.) By
examining the proof of Lemma 4.1 it is clear we may consider f(x,)#O0.
Hence ¢ # 0 for every S and we may consider ¢5 =1 for every S. We con-
sider the Taylor series developments of Q¢ and f aroud x, and we write
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0°=3 03
/=3 1.

where f,e Z('E;C) for jeN, Q3e2(‘S;C) for j=0,1,..,n, and the
equality holds true in a neighborhood of x, in Un S. Since f/-Q*=1 in
Un S the unicity of the Taylor series development implies that in S we
have

an(é;zl

106+ /07=0

LQ8+fu Q7+ - 4+ /005 =0

Si Qo+ i Q5+ - + 1,05 =0, for k=zn+1.

Hence, since f,=f(x,)#0, we have f7*'%#0 and the first n+1 above
equations have a unique solution Qg, ..., Q7 defined in S by expressions in
terms of 1, fy, ..., f,, (by the so-called Cramer’s rule). If we define Q,, ..., 0,
in E by the same expressions (it makes sense to do it because f,, .., f, are
defined in E and 1, f; are non-zero constants) we get Q=Qq+ --- +
Q. € Z(E; C) satisfying O not identically zero in U and Q-f=1in U
(since QIS-f=Q% - f=11in Un S for every S). Thus f'is in Rom(U, C.

Case (b). Let (f;)7_ be a sequence in %,. By Lemma 4.1 we know that
there are fe A *(U,C), x,e U, a subnet (f,),., of (f)7., such that
(fi.)2c; converges to fin the sense of the topology t,, and, for every finite-
dimensional vector subspace S of E with x,€ 8, we have f|SnU in
A 11)(U; C). Since || f1] . <r it is enough to show that fe #7 | ,(U; C). This
is trivial if f is identically zero in U. We suppose that this is not the case.
For every S we consider P%, Q%€ #(S; C) such that f(x)-Q%(x)= P5(x)
for each xe S~ U and Q7 not identically zero in U S. Now we consider
the Taylor series developments of PS5, 0, and fin a neighborhood of x, in
SnU:

PS=PS+P Q°=03+0f. f=Y J

Here P35, 05€C, P;, Q7€ 2('S; C), f,e 2(/E; C), jeN. By the unicity of
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the Taylor series development the equality PS= Q% - fin a neighborhood of
xg in U S implies the following equalities in S:

foQ5=P;
fiQs+f107=0  for j>2.

As we saw in the proof of Lemmad4.l we can always consider
f(xo)=fo #0. We have two possibilities to consider:

(1) For every finite-dimensional vector subspace S of E such that
Xo€ S there is another such vector subspace S’ > S satisfying P§ = 0.

(2) There is a finite-dimensional vector subspace S, of E such that
xo€ S, and for every other such subspace S of E, So .S, we have P #0.

In case (1), if Py =0 it follows that Q3 =0 since f,#0. Then
fo07 =P7 and f; ;07 =0 for j>2. Since 0% #0 and Q§f =0, we must
have 07 #0 in an open dense subset of Un S". Thus f;_, is identically
zero in this set and f;_,| S’ =0 for j> 2. Therefore f is constant in S" n U.
But under our hypothesis of case (1) it follows that f is constant in U and
hence fe R o (U; C) = #(7 1,(U; C).

In case (2) with no loss of generality we may suppose that Pj=1 for
every finite-dimensional vector subspace S of E containing S,. It follows
that Q3 = 1/f, and QO = PY/f, — f1/f% in S. If we replace these values in the
equations f;Q5 + f; Q7 =0for j>2 we getin S

fimt ps_Lieachy 1y
fo EEA

Py

If for some j>2, f;_; #0 in E we have f;_,(x)#0 for every x in an open
dense subset V of E. Hence

[ _fx)
Jo J;—1(x)

for every xe S V. For all those S such that S ¥V # ¢ the right-hand side
of the above equation defines a continuous function in an open dense
subset "N S of U~ S and (by the left-hand side) it has a continuous linear
extension to S equal to P}. Since the right-hand side is independent of the
S we consider, by defining

Pi(x)=

£ f)

P === ™
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for xe VV we get a continuous function in ¥ which has a linear extension
P,e #('E; C). We may take

Pl fl 1
y=———"5e2('E,C
Q 77 f¢ ( )

and we get Q,|S=0Q7. Hence /- (Q, + Qo) = P, + P, where Q,=1/f, and
Py=11in U with @+ @, #0. Hence fe 2] ,,(U: C).

If for any j>2 we have f; ;=0 in E, then f is constant in U and it
belongs to Z 5 0,(U; C)c & ,,(U; C). Q.E.D.

The question of density of rational functions in the set of holomorphic
functions over compact subsets of Banach spaces was examined by Matos
in [8].

5. BEST NON-NORMABLE METRIC APPROXIMATION BY
PoLyNOMIAL OPERATORS

In this section E, F, and G are complex Banach spaces and F= G* We
denote #,(E; F) the complex vector space of all mappings from E into F
which are bounded over the bounded subsets of E. The set of all bounded
subsets of E is indicated by b(E). If Be b(E) and fe F(E; F) we sct

I/l s=sup {Ilf(1)l; 1€ B}.

The locally convex topology t, in Z,(E; F) generated by the family of semi-
norms (|-l z)gcp) 18 metrizable. A corresponding metric defining this
topology is given by

1 If—¢glis,
If—gl= T s
2,2 T+1if— glis,

where (B,),_, is an increasing sequence of elements of A(E)} such that
E=U7_, B, and every Beb(E) is contained in some B, (eg.,
B,={x€eE;|lx|| <n}, 1,2,..). It is obvious that this metric depends on the
sequence (B,)X_, we take, but it is quite simple to see that all the results
we are going to prove will be true for any one of these metrics. In order
to simplify our notation we choose B,={x€eE; x| <n},n=1,2, ... As it
was shown in Example 2.1(b) (with p = 1) the function ¢(f)=|fi=f—0]
for fe #,(E; F) is an element of ¥ ((%,(E; F), t,)) with diam |-|=1. We
denote by ¢ the locally convex topology in % (E; F) generated by the
seminorms P, ,, where K is a compact subset of E and ze G (see Sect. 3
where we first considered p, ). Hence 7§ < 1,. It is clear that the topology

640758 3.7
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w* in #(E; F) generated by the seminorms p,, . with xe E and zeG is
such that o* c td.

5.1. LeMMA. For re [0, 1) the set
2, ={fe FZ(E F); |fI<r}
is w*-closed, hence 1§-closed in Fy(E; F).

Proof. First we suppose that there is f in the w*-closure of &, not
belonging to Z,. Hence | f| > r and there is a net (f,),. 4 in £, converging
to f for the w* topology. We consider p=2""(|f| —r)>0 and ke N such
that

1/,
27— >r+4p. (4
R Ty )

If ne{l,..,k} and 6,>0, since

I£1l 5, =sup{|f(x)(1)l; xe B,, te G, e <1}

1M =

and
!
teRY »——eR*
141t

is continuous and increasing, there are x,,€ B,, t,€G, ||¢,]| <1 such that

o s, 5w &) )

L+1flls, ~ T+

Since lim, ., |f(x.)(t)] = |f(x,)t,)], for a given p,>0 there is a,eA4
such that 2 € 4, a > «,, implies

I FACY G P V€. ()

T+ ) )] T+ [ falx,) (1) e ()
Hence, for a > a,,, it follows from (5) and (6) that
9 n | falXa)(2,)] oo 1/ 1, (0. +5.). )

L+ | £ () (2] L+1fls

Now if we consider d,, and p, such that

k
Y (6. +p)<p

n=1
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and 2z,€ A such that 25>, for n=1, .., k, it follows from (7) and (4) that

)
2 e

for every a = a,. Thus

k “f:x” B,
Iz ) 27"
f nz-l 1 + |fal| B,

2% 5 —n_1fa{Xa)L)]

R Ty TR T

for all x> a,. But this is impossible since f, € &, for every a € 4. Hence we
must have fe Z,. Q.E.D.

5.2. THEOREM. (a) If % is a vector subspace of #,(E; F) containing
PE;F), then 2,(E; F) has the Chebyshev center property (hence, it is
proximinal) in U relative to |-|.

(b) If % is at§-closed subset of Z,(E; F) and % is a vector subspace
of FAE; F) containing W, then W has the Chebyshev center property
(hence, it is proximinal) in U relative to |-|.

Proof. Part(a) will follow from Lemma 2.3 and Lemma 5.1 if we
show that for each z,-bounded subset # of %,(E; F) and each re [0, 1), the
set

K(B)= (| {Pe?(EF);PecQ+2}

Qe&#

is 1¥-compact. Let k>0 be such that k/(1+k)>r. If Pe 2, (E;F) and
Q€& are such that |P— Q|5 >k for all j=1, 2, .., then

k
1 +&

— 2 =7 = —
IP-0| Elz >

and P¢ QO+ 2,. Hence, if Pe K,(#) and Qe %, there is je {1,2,..} such
that

IP—Qllg<IP—Qlp<k.
It follows that

[Pllg, <k+Qlls,<k+sup [Qllg=k+C< +x
QeB
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and

sup ||Pllg, <k+C< +oc.

Pe K (#)
Thus K,(#) is contained in the closed ball of center 0 and radius & + C in

2, (E; F) with respect to the norm || 5. We denote this ball by 2. We
know that for every Pe #,(E; F)

P=Y P

i=0

(P,eP('E;F), j=0,..,m)

where

P(ix)
P(x)—z—mfm_l ey d.

for every x € B, (see Nachbin [9]). Tt follows that
IPillg, <IPllg<k+C

for all Pe 2 and j=0, .., m. Hence

sup |P(x)| <(k+C) Z x|l < +o0

Pe% =

and 9(x)={P(x); Pe Z} is o(F, G)-relatively compact for every xe E. If
K is a compact subset of £ and ze G we have

sup px (P)<(k+C)lizl Y, sup |]l/ < +o0.

Pe2 j=0 tekK

Hence 2 is t§-bounded. By the generalized Montel’s theorem &£ is t§-
relatively compact in #(E; (F, o(F, G))). In order to prove that Z is t§-
compact it is enough to show that 2 is t¥-closed in S#(E; (F, o(F, G))).
Let (P,),.;be a netin @ t§-convergent to f € #(E; (F, o(F, G))). We have
lim, ., P, (x)(z)= f(x)(z) for every x€ E and z€ G. This implies that /' is of
the form

f(x)= i 0 ,(x) VxeE

with Q (x) = A/(x, .., x) = A,x’, Vx € E, where A4, is a j-linear mapping from
E’ into F. Hence f is a polynomial (not necessarily continuous) of degree
less than or equal to m. Since |P,(x)(z)] <k+ C for xe B,, z€G, |z|| =1,
we get [f(x)(z)|<k+C for xeB,, zeG, |lz|=1. This means that
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Sup,. s |f(x) <k + C. But we know that a polynomial bounded over the
unit ball is continuous. Therefore fe 2, (F; F) and fe %. Since K (%) is
contained in the t§-compact subset £ of Z,(E; F) it is enough to prove
that K,(#) is t¥-closed in Z,(E; F) in order to show that K (#) is t¥-com-
pact. If Pe#,(E; F) is the t¥-limit of a net (P,),., of K,(#), we have
P,—Qe%, for every ael and Qe . Since &, is tJ-closed in F,(E; F) by
Lemma 5.1, it follows that P— Q =1lim,., P,— Q€ %, Hence Pe K.(4) as
was our objective.

Part (b) follows from Lemma 2.3, Lemma 5.1, and from the fact that
for every # t,-bounded in %, (£; F) and every re [0, 1), the set

() {PeW;PeQ+Z}=% nK(A)

QcH
is 1&-compact. Q.E.D.

We note that for every n <m the vector subspace 2("E; F) is t§-closed
in #2,(E; F). Hence part (b) of Theorem 5.2 implies that 2("E; F) is
proximinal in #(E; F) with respect to |-|.

With the methods of this paper we cannot prove results of best
approximation by holomorphic or rational mappings relative to |-|. The
problem is that, in general, the set of holomorphic mappings, correspond-
ing to K, | (B) of Lemma 2.3, is not tg-compact.

6. BEST APPROXIMATION BY FINITE RANK OPERATORS

As we have considered before E, F, and G are complex Banach spaces
with F=G* and U is a non-empty bounded open subset of E. In /™(U; F)
and in F,(E; F) we consider their subsets /5 (U; F) and %, (E; F) of all
mappings whose images are contained in vector subspaces of F with finite
dimension < N. Then we consider

H U, Fy=H"(U; F)ni3(U; F)

PYE.Fy=P("E,F)n!Z(U; F)
PUE; F) = 2,(E; F) 0 (5(Us F)

U3 FY= A%, (Us F) N (U F)

(mn

‘\%I

(m,n),

We recall the following results

6.1. THEOREM. P ('E; F)= %y(E;F) is w*-closed in P('E;,F)=
L(E; F).
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This result is due to K. Floret (see [5]).

6.2. THEOREM. For an open subset U of E there are complex Banach
spaces HY and ¢,€ # <(U; HY) with the following universal property: for
every complex Banach space H and every fe # “(U; H) there is a unique
Tfe.‘}’('Hif.’; H)=%(Hy: H) such that Tyeey = f, and | T/ = || f|.

This result has been communicated to us by Jorge Mujica and it will be
published later.
It is easy to prove the following corollary to these two theorems:

6.3. COROLLARY. P™("E; F), P (E; F), #%5, . yU; F), and # 2(U; F)
are t¥-closed in P("E; F), (E; F), &, ,(U; F), #>=(U; F), respectively.

(m,n)

With this corollary and Theorems 3.1, 4.1, 4.2, 5.2 we get immediately
the following results.

6.4. THEOREM. (i) PV("E;F) and PY(E;F) have the relative
Chebyshev center property in [<(U; F).

(i) PN("E; F) and PN(E; F) have the relative Chebyshev center
property in F(E; F) with respect to |-|.

(i) R0, . w(U; F) has the relative Chebyshev center property in
1*=(U; F) when dim(E) < + .

(iv) H#5(U; F) has the relative Chebyshev center property in 1*(U; F).

Part (i) of this theorem was proved by Roversi [12] for #V("E; F),
neN, and by Deutsch et al. [4] for #"('E; F) with direct proofs.
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